Munkers Section 13 Exercise 7
This is question 7 on page 83 in Chapter 13 of James R. Munkers’ Topology 2nd Edition textbook.
Question
Consider the following topologies on \(\mathbb{R}\):
- \(\mathcal{T}_1\) = the standard topology
- \(\mathcal{T}_2\) = the topology of \(\mathbb{R}_K\)
- \(\mathcal{T}_3\) = the finite complement topology
- \(\mathcal{T}_4\) = the upper limit topology, having all sets (a, b] as basis
- \(\mathcal{T}_5\) = the topology having all sets \((-\infty, a) = \{x : x \lt a\}\) as basis
Which of these topologies contains the others?
My Contains
Blank spaces mean I didn’t get to it.
| \(\mathcal{T}_1\) | \(\mathcal{T}_2\) | \(\mathcal{T}_3\) | \(\mathcal{T}_4\) | \(\mathcal{T}_5\) | |
| \(\mathcal{T}_1\) | \(\mathcal{T}_1 \subset \mathcal{T}_1\) | \(\mathcal{T}_2\not\subset\mathcal{T}_1\) | \(\mathcal{T}_3\not\subset\mathcal{T}_1\) | \(\mathcal{T}_4\not\subset\mathcal{T}_1\) | \(\mathcal{T}_5\not\subset\mathcal{T}_1\) |
| \(\mathcal{T}_2\) | \(\mathcal{T}_1 \subset \mathcal{T}_2\) | \(\mathcal{T}_2 \subset \mathcal{T}_2\) | \(\mathcal{T}_4\not\subset\mathcal{T}_2\) | ||
| \(\mathcal{T}_3\) | \(\mathcal{T}_1\not\subset\mathcal{T}_3\) | \(\mathcal{T}_3 \subset \mathcal{T}_3\) | \(\mathcal{T}_5\not\subset\mathcal{T}_3\) | ||
| \(\mathcal{T}_4\) | \(\mathcal{T}_1 \subset \mathcal{T}_4\) | \(\mathcal{T}_2\not\subset\mathcal{T}_4\) | \(\mathcal{T}_4 \subset \mathcal{T}_4\) | ||
| \(\mathcal{T}_5\) | \(\mathcal{T}_1 \subset \mathcal{T}_5\) | \(\mathcal{T}_3\not\subset\mathcal{T}_5\) | \(\mathcal{T}_5 \subset \mathcal{T}_5\) |
Extras
link to the mathjax LaTeX specification: https://treeofmath.github.io/tex-commands-in-mathjax/TeXSyntax.htm